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Summary

For k > 2 independent normal populations with unknown means and a common known
variance, the problem of selecting the population with the largest mean and simultaneously
estimating the mean of the selected population is considered in the decision theoretic
approach following Cohen and Sackrowitz (1988). Under several loss functions with two
additive components due to selection and due to estimation, Bayes decision rules are
derived and studied. Both, the case of equal sample sizes and the case of unequal sample
sizes are treated. The "natural" rule, which selects in terms of the largest sample mean
and then estimates with the sample mean of the selected population, is critically examined
in all situations considered.
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1. Introduction

Let 7r,..., 'k be k > 2 given normal populations with unknown means 01,..., Ok E R,

and a common known variance a 2 > 0. Suppose we want to find the population with the

largest mean and simultaneously estimate the mean of the selected population; here the

observed data are k independent samples of sizes nl,..., nk from r1 , 7rk with sample

means X 1 ,... , Xk, respectively.

All results in the vast literature on ranking and selection are restricted to one of the

two decision problems, except one. Cohen and Sackrowitz (1988) have presented a decision

theoretic framework for the combined decision problem and derived results for the case of

k = 2 and n1 = n 2.

Selecting the population with the largest sample mean X[k], say, is usually called

the natural selection rule, since it is the uniformly best permutation invariant selection

procedure for a general class of loss functions if the sample sizes n 1,... , nk are all equal.

However, for unequal sample sizes, the natural selection rule loses much of its quality. In

fact, under 0-1 loss, it can perform "worse than at randon, 1i ,1..., Ok are close together.

This is studied in detail in Gupta and Miescke (1988).

Estimating the mean of the selected population has been considered only under the as-

sumption that the natural selection rule is employed. Knowing that the natural estimator

Xi for 0,, in case of 'i being selected, i = 1,...,k, overestimates B{k] = max{O,. , ,,

and thus overestimates even more so the mean of the selected population, alternative

estimators have been studied for the present and for other experimental models by the fol-

lowing authors: Sarkadi (1967), Dahiya (1974), Cohen and Sackrowitz (1982), Sackrowitz
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and Samuel-Cahn (1984, 1986), Jeyaratnam and Panchapakesan (1984, 1986, 1988), Vel-

laisamy and Sharma (1988, 1989), Vellaisamy, Kumar and Sharma (1988), and Venter

(1988).

Rather than "estimating after selection", the decision theoretic treatment of the com-

bined selection-estimation problem leads to "selecting after estimation", as it has been

pointed out by Cohen and Sackrowitz (1988). So far, however, only a few limited situa-

tions have been considered. The purpose of this study is to extend known results in several

directions. First, the case of k > 2 populations needs to be considered since in selection

problems alone, typical features and difficulties do not appear before k is at least equal

to three. Second, for the two additive components of the loss function due to selection

and due to estimation, alternatives to 0-1 loss and squared error loss, respectively, have

to be examined. Zero-One loss for selection has the undesired effect of a stiff penalty for

selecting a non-best population even if its mean is close to the largest mean, and absolute

error loss is a reasonable alternative to squared error loss for estimation. Third, the case of

unequal sample sizes nl,..., nk has to be considered. If selection alone is under concern,

better rules than the natural selection procedure have been derived in Gupta and Miescke

(1988) for this purpose, all of which take into account the precisions with which the sam-

ple means X 1 , ... ,Xk represent the unknown means 01,... , k. Thus, in the combined

selection-estimation problem, where additionally the precisions of the estimates depend on

the respective sample sizes, non-standard decision rules are to be expected. This will be

discussed in Section 4, after a general framework has been introduced in Section 2, and

the case of equal sample sizes has been treated in Section 3.
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2. General Framework

Let X = (XI,.. Xk) be a random vector of observations which has a density (prob-

ability function) .r f(xiJOi),X C Rk(Zk),2 E Qk C Rk with respect to the Lebesguei=1 -

measure on Rk (counting measure on Zk). Of course X may be already a collection of k

sufficient statistics for 01,. . . , Ok.

The goal is to select the population, i.e. coordinate, which is associated with 0[k] =

max{01 ,... , Ok}, and to simultaneously estimate the 0-value of the selected population.

Since Bayes rules are the main topic of this paper, only nonrandomized decision rules need

to be considered which are represented as follows.

(1) d~_. = (s(x_),es(z_)(L_)), x_ C Rk,

where s(x) E {1, 2,..., k} is the selection rule, and ti(x) E Q,i = 1,...,k, is a collection

of k estimates for 9i, i = 1,. . . , k, respectively, available at selection.

The loss function is assumed to be addive,

(2) L(_0,d) = A(2, s) + B(98 , 4),

where A represents the loss of selecting population 7r, at 0, and B the loss of estimating

0, by f,. The following examples will be considered.

(3) Ao(0,s) = cIj (0,);

Ai(,s) = c(0[k] - 0.); B(0,t,e.) = ls - t.I;

A 2(8,s) = c(8k) - 0,)2; B 2 (0,e,) = (0, _ ,)2.

All combinations of A's and B's are reasonable in one way or another, and c > 0 gives

relative weights to the two types of losses. However, it seems that the most appealing and
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realistic combinations are

(4) £1(,d_) = c(O[k] - 0.) + 10, - eI, and

£ 2(2,d) = c(Ok] - 2)2 + (9 -

In the Bayes approach, let the vector of the k unknown parameters be random and

denoted by _. Under a prior distribution of it, the posterior risk at X = I_ can be

represented as follows.

(5) r(d(z)[_) = rA(S(x)jZ) + rB(S(X), es((1)jL),

where rA(S(X.)[X) = E{A(a,s(_))X = _x}, and rB(s(X),e,(j,(X)l_) = E{B(O (r,

e.((_))1x = X1}.

As it has been mentioned in the Introduction, the decision theoretic treatment of the

combined selection-estimation problem leads to "selecting after estimation". This can be

seen now from the following fact which is a straightforward extension of the main result

in Cohen and Sackrowitz (1988).

Lemma 1. Let f(x) minimize rB(i, (_)X), i = 1,... , k. Furthermore. let s*(_) minimize

rA(s(z_);_) + rB(s(z_,e( (_)_). Then the Bayes decision rule, at X = Z, is d*(_)

(S (*_W, f.(Z()).

It should be pointed out that f(x) is the usual Bayes estimate of 9i, i = 1,... , k, if

estimation alone is under concern. There is no bias reduction involved which has been the

main concern in papers dealing with estimation after selection mentioned in the Introduc-

tion.
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Under certain circumstances, the problems of selection and estimation can be com-

pletely separated. More precisely, the following holds.

Corollary 1. Whenever at some X = x, rB(i, £i(x)Ix) does not depend on

i E {1,2,. . ., k},s*(_) minimizes rA(s(x)1x).

Let us consider briefly the selection problem by its own, i.e. assume that loss function B

in (2) is zero. Then the natural selection rule sN(), which selects in terms of the largest xi,

k
is known to have strong optimality properties. If the density of X is of the form r f(xi 19i),

m i=1

where f has monotone likelihood ratios, and if loss function A in (2) is permutation

invariant and favors selection of larger 9-values, then SN is the best permutation invariant

selection rule, uniformly in 6, i.e. it is Bayes selection rule for every permutation symmetric

prior. This and further results can be found in Gupta and Miescke (1984).

In combination with estimation of the parameter of the selected population, however,

it can occur that in the above situation, where s is uniformly best invariant selection

rule, s N is not part of the Bayes rule d* = (s*,*.), i.e. s* is different from s'. More

precisely, this happens when the assumption of Corollary 1 are not met. The following

example illustrates this fact.

Example 1. Let Xi , N(Oi,1),i = 1,...,k, be independent. Assume that a priori,

O ... , Ok are a random sample from an exponential distribution with density exp(-9),

9 > 0. Finally, let L(_,d) = A(_,s) + (0, - es) 2, where A is permutation invariant and

favors selection of larger 9-values.

A posterior, at X = z, 01,... , Ok are independent, and the posterior density of Oi is

( yi)/P(yi),Oi > 0, where yi = xi - 1,i = 1,... ,k, and where W and P denote the
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density and c.d.f. of N(O, 1).

Standard calculations lead to the following results for I = 1,... , k.

(6) e() = E{Oi[X = x} = yi + o(yi)/P(yi), and

rB(i,e,(x_)Ix) = Var {E®iLIX = 1} = 1 + 2yi + yi (yi)/f(yz) -

Thus, although sN(L) minimizes rA(S(.)IZ),SN is not equal to s*, since rB(i,e*(_)IZ)

depends on i E {1,. . . , k} except for a Lebesgue null set.

At the end of this section, let us briefly justify the choice of a Bayes approach to the

given problem by pointing out that the classical (frequentist) approach does not offer a

direct analytical solution. The risk function for a decision rule d at parameter point _ E R k

is given by

(7) R(2,d) = E_[A(Os(X))]

+ Ee_[B(O,(x), ef,(.X)I.

For one fixed given selection rule s, the second term can be optimized, at least approxi-

mately, in many circumstances. This has been done in the previous papers dealing with

estimation of the parameter of the selected population, where s = sN has been assumed.

However, to optimize R(O,d), one has to consider at least some class of possible selection

rules for s, which appears to be not feasible. Bayes rules, on the other hand, can be found

in a constructive way as it is shown in Lemma 1.

3. Independent Normal Populations With Equal Sample Sizes

Let Xil,...,Xi, be a sample from N(Oi,a2),i = 1,...,k, where a 2 > 0 is known, and

7



n

let all samples be independent. Let Xi , -' E Xij, i = 1-. .k, be the sample means,

which are sufficient for 0.

Assume that a priori, 0 1 ,. . ,k is a random sample from N(y, q), wherei p R and

q > 0 are known. This conjugate prior will prove to be useful in several aspects, as it has

done so previously in Sackrowitz and Samuel-Cahn (1984), Cohen and Sackrowitz (1988).

and Gupta and Miescke (1988). Aposteriori, given X = x., Oi N (qz.+pu 'P '

1,.,k, are independent, where p = o2'/n. And marginally, X 1 ,.. Xk is a sample from

N(i, q +±p).

For a slightly more general class of priors, the following result can be shown to hold.

Theorem 1. For the loss function L = A + B in (2), assume that A is permutation

symmetric and favors selection of larger 9-values, and that B is either B, or B 2 in ( 3).

Then for every exchangeable normal prior, the Bayes rule d* = (8*, t,.) satisfies s* = S N

and e(1) = E{~iJX = z},iZ =I, ,k

Proof: Apriori, let . N(ul, al + bjj IT), where a > 0, a ± kb > 0 , 1 T = (1, 1..., 1),

and I is the identity matrix. Then aposteriori, g* ven X = x,. - N(f (1.), al + 031 IT),

where a = ap/(a + p), #3 = bp2 /Elp + a + kb)(p + a)], and

(8) () =E{.QX=1

= [al + 0~1 16T][(a + kb)-'Ms1+ p'lxI,

since EEiX= Z.} minimizes rB(iCi(Z.)J) under both B = B, and B = B2 . The

minimum values are, respectively,

(9) rB, (i, E*(1) 11) = (2(a + 03)/7r]1 /2 , and
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r B2 (i W 11)I) = ce + ,

which do not depend on i E {1, 2,... , k} and x. The latter fact will be utilized later in

this section.

Thus, the assumption of Corollary 1 is fulfilled at every L E R k, and from the discussion

following Corollary 1 it follows that sN(z) minimizes rA(S(l)Iz) at every L E Rk, i.e.

S* = sN . This completes the proof of the theorem.

In the remainder of this section let us consider the natural decision procedure dx =

(SNC$'"), which employs the estimates fN(.) = xi,I = 1,...,k. Although from the

frequentist point of view, it has the undesirable features of overestimating the largest

mean and thus even more so the selected mean, dN is generalized Bayes rule for the

noninformative prior, i.e. the Lebesgue measure on Rk. The i.i.d. normal prior considered

at the beginning of this section can be used for further examinations of dN, since for q

tending to infinity, the posterior distributions tend to the formal posterior distribution

associated with the noninformative prior.

As mentioned in the Introduction, typical features and difficulties in selection problems

do not appear before k is at least equal to three. The following result may be considered

as an illustration of this fact.

Theorem 2. For the loss function L = A + B in (2), assume that A = A0 , and that B

is either B1 or B 2 in (3). Then the following holds. The rule dN = (sN, )is minimax if

and only i k = 2.

Proof: Obviously, SN( J(Z) = X[kl,z E Rj. Cohen and Sackrowitz (1982) have shown

that for every loss function L with L(O) = O,L(z) = L(-z), and L(IzI) increasing in
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IzJ,Eo(L(X[k - ON(X))) is maximized at 0 = 0. Thus, the maximum of E_(lX[k] -

SN)I m ) is found to be equal to p(a' + b') for m = 2, and equal to p1/2ck for n = 1.

where a2 = Var (N[k]),bk = E(N[k]), and Ck = E(INtkII), and N[k] is the maximum of a

sample of size k from a standard normal distribution. The first fact has been shown in

Sackrowitz and Samuel-Cahn (1986), and the second follows in a similar way.

The maximum of EG(Ao (, s N(_))) occurs also at 0 = 0, and it is equal to c(1 - 1/k),

which has been shown in Gupta and Miescke (1988). Thus,

(10) max R( , N) fc(1 - I/k) + p/2ck, if B = B1

c(1 - 1/k) + p(a2 + b2), if B = B 2

At this point it is convenient to consider the following randomized rule do , say, which

uses EN(_) = xi, = ,... , k, and selects, without any consideration of the data, each

population with the same probability 1/k. Obviously, for all 0,

c(1 -1/k) + (2p/7r) 1/ 2, if B = B1

-'- c(1 -1/k)+p, ifB = B 2

which provide upper bounds to the respective minimax values. And since a2 + b2 > 1 as

well as ck > (2/7r)'/ 2 for k > 3, dN cannot be minimax rule for k > 3.

Finally, to see that dN is minimax for k = 2, one realizes that (10) and (11) are

identical in this case, since c2 = (2/ir)1/ 2 , and a 2 + b2 = 1. It suffices to find a sequence

of priors whose Bayes risk tead to (11), because do is an equalizer rule. This sequence is

provided by the conjugate prior considered at the beginning of this section, by letting q

vary, q = 1,2, ... From (9), with a = q, a = qp/(q + p), and 3 = 0, it follows that the

part of the Bayes risk due to estimation tends, for large q-values, to (2p/ir)1/ 2 and p under

B = BI and B = B 2 , respectively. The other part of the Bayes risk due to selection tends
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to c(1 - 1/k), as it has been shown by Gupta and Miescke (1988). This completes the

proof of the theorem.

Remark: The "if"-part of Theorem 2 is also valid under the assumption of A = A1 or

A = A 2 . Although the parameter configuration 01 = 02 = ... = Ok is not least favorable for

Ee[A,(e, sN(x))1, minimaxity holds because the risk due to estimation of dN is constant

in 0 for k = 2. For k > 3, however, the question of minimaxity remains open since the

two risk parts, due to selection and due to estimation, do not assume their maxima at a

common parameter configuration.

We conclude this section with the following.

Theorem 3. For every loss function (2), with components A and B taken from (3),

the rule dN = (sN, eN ) is extended Bayes rule.

Proof: Consider the same sequence of priors which was used at the end of the proof of

Theorem 2. Under B = B 2, the posterior risk due to estimation of dN is given by

(12) E{(Oe8 (. -X[k])IX = X}

= E(,(- ,IX = Z} + - kl)

= pq(p + q)-' + [p(p + q)- 1 ]2 (x[k] _1)2.

Since, marginally, X 1 ,..., Xk is a sample from N(p, p+q), the Bayes risk due to estimation

of d N turns out to be

(13) Yq(p + q)-i + p 2(p + q)-'(a2 + b2),

which tends to p, as q tends to infinity, where p is also the limit of the Bayes risk due to

estimation.
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Under B = B 1, it follows now immediately that the corresponding Bayes risk due to

estimation of dN satisfies

(14) E(Ie8 ) - Xtk])'

since, by the facts stated above,

(15) E((e*N() - X[k]) 2 ) -- 0.

The second part of the proof deals with the other part of the Bayes risk due to

selection. Since under each A = Ai, = 0, 1,2, s N is employed by the Bayes rule, i.e.

s N = s*, it remains to be shown that in all three cases the limits of Bayes risks are finite.

The case of A = A0 has been treated in Gupta and Miescke (1988), where it is shown that

the Bayes risk due to selection of dN tends to c(1 - i/k) as q tends to infinity.

For A = A 2 , the risk due to selection of dN satisfies at every fixed 9 with, say, Ok =[k],

(16) Eo_[A 2 (_, sN (X))]

k 1 (Ok - O) 2 PO{X, =Xk]}
i=1

k-1<_ (Ok - Oi) 2 Po_{Xi _ Xk }

i=1

k-i
< 2p E Ajp(Ai) < 2p(k - 1)w,

i=I

where A = (Ok - Oi)/(2p)1/ 2 ,i = 1,...,k - 1, and w = p(1). The first inequality is

obvious, the second follows from the fact that AI(-A) < V(A) for A > 0, and the third

holds since the maximum of Ap(A) on the positive real line occurs at A = 1.
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Thus, it follows that the Bayes risk due to selection of dN tends to a finite limit as

q tends to infinity. Finally, applying Schwarz' inequality to (16), the same is seen to hold

under A = A1 . Actually, in this case one can verify that the limit is zero. This completes

the proof of the theorem.

4. Independent Normal Populations With Unequal Sample Sizes

Let Xii,... ,Xi,,, be a sample from N(Oi,a 2 ),i = 1,... k, where a.2 > 0 is known,

and where not all of the sample sizes nl,...,nk are equal. The k samples are assumed

to be independent. As before, sufficiency leads to considering the sample means Xi =

ni E Xij, i= 1,... , which have variances pi = n or , ,... respectively.
j=1

By various reasons mentioned before, as well as those discussed in Gupta and Miescke

(1988), the 0-1 loss for selection, i.e. A0 , will not be considered any further. Moreover.

to keep the analysis in reasonable size, we restrict ourselves in the sequel to the two most

appealing and realistic loss combinations L1 and £2, given by (4). It should be pointed out

that the risk function of every decision rule d = (s, t,) is continuous in 9 under both, C1

and £2. Continuity of the risk due to selection under loss A1 has been justified in Gupta

and Miescke (1988), and the same arguments apply to A 2. Continuity of the risk due to

estimation under loss B 1 and B2 is well known. Thus, all proper Bayes rules derived in

the sequel, as well as those considered before with any loss combination from (2) and (3),

are admissible.

Since the analysis of Bayes rules d* = (s*,te:.) under loss function £1 is easier to

manage, let us deal with it first. The risk function of a decision rule d = (s, t,) at
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parameter point 0 is given by

(17) R(,)=cEG ([k] - 0,( ) +CG1s 2  - fs,())D.

In the present situation of unequal sample sizes nl,... , nk, it is appropriate to consider,

more generally, also non-exchangeable normal priors, O, -~ N(i, qj3, Z = 1,...J, . In-

dependence Of 0 1,... , however, will be kept as before. Thus, a posteriori, given

x , 0 ~ 1 ,.. ,k are independent, with O, -~ N (qixj.ij~ 'q*gj' 1 ,...,k, and

marginally, Xl,-..,Xk are independent with Xi N(yui,pi +qi),i* = 1,...J,.

By Lemma 1, the Bayes rule employs the estimator e*(j) = (qixi + pji)/(qj ±pi) for

9i, i = 1, .. , k, and it remains to find s *(x). For any decision rule d =(s, f) the posterior

risk at X =x turns out to be the following for selection s(z) = I E {1..,k}

C [leIX= - qixi + pipi +' 2 qip, /

Thus, the following is seen to hold.

Theorem 4. Under loss function L, and the normal prior considered above, the BayLes

rule d* = (s*,e*f)emplgys f*(j) = (qixi +p,/i)/(qj +pi), i = 1,...k,and s* (Z) maximizes

d ")- [2qjpj/7r(qj + p,)] 1/2 i = ,. k.

There are three special cases which deserve to be studied in more detail. They are as

follows.

Case 1: Noninformative prior; or q, --+ oo,l = 1,...J,. In this case, e7(W =Xi -

1..k, and s*(j) maximizes xi cI(2p/r)1/2i = k

Case 2: Prior variances proportional to sample variances; i.e. qj = ^tp,,i 1,. k, for

somefixed-y>O. In this case,e~~ (-yxj+l)/(-y+1),i = 1,...,k, and s*(Z) maximizes
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(x_) - '-(2-ypi/(-y + 1)7r)1/ 2 , i = 1,..., k. Especially, for pui -.. = Ilk = i, say, t,(_) =

(Yxi +Il)/( + 1), i = 1,..., k, and s*(.)maximizes xi -c-1 (2(-t + 1 )p,/"yr)'/ 2 ,i = 1,..., k.

Case 3: Posterior is decreasing in transposition (DT); i.e. q I + pi _ r-a, i = 1,... ,

for some fixed r > 0. Here, the sum of prior precision and sampling precision is constant

across the k populations. Such priors have been considered and justified in Gupta and

Miescke (1988). The idea for applications is the following. If the normal priors are not

exchangeable, a proper choice of sample sizes nh,... , nk in the planning of the experiment

can lead, at least approximately, to a posterior which is (DT). This is highly desirable

since in that situation usually quite simple Bayes rule are found. In the present case,

*(x)= r(p-'xi + q,'pi),i = 1,...,k, and s*(x) maximizes t!(I),i = 1,...,k. Especially,

for pl = ... = Ak = M, say, t!(z) = p-'r(xi - M) + p,i = 1,..., k, and s*(Z) maximizes

Pi-1 (Xi M/), i = , . ,k.

The decision rule considered last in Case 3 is of a very simple and appealing form.

Due to the (DT)-property of the posterior, it can be seen to be Bayes rule under the large

class of loss functions assumed in Theorem 1. Without further proof, the following can be

stated.

Corollary 2. For the loss function L = A + B in (2), assume that A is permutation

symmetric and favors selection of larger 9-values, and that B is either B, oE B 2 in (3).

If the normal prior satisfies qi-' + pi = T-, i = 1,..., k, for some r > 0, then the Bayes

rule d* = (s*, e.) is of the following form. f(z) = p.'r (xi - iti) + pi, Z' = 1,... , k, and

s*(Z) maximizes e()

There is one interesting feature of the Bayes rule given by Theorem 4 which is worth
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to be pointed out explicitly. Whenever for some i E {1,... , k),i turns out to be larger

than pi, then a smaller (larger) pi, i.e. a larger (smaller) ni, works in favor of (against)

population 7ri to be selected. And for xi < pi, the reverse is seen to hold true for the rule

derived in Case 3. On the other hand the rule of Case 1, as well as that one of Case 2 for

PI = ... = Pk, have the property that at any xi, a smaller (larger) pi works in favor of

(against) 7ri being selected.

It is also interesting to note that, from a frequentist point of view, the decision rule in

Case 1, which may be considered as a "natural rule" under unequal sample sizes, selects

in terms of lower confidence bounds of 01,... , Ok at a common fixed confidence level.

Especially for the values c = 0.485 and c = 0.343, xi - c-'(2pi/r)'/2 is a lower confidence

bound for 8i with 95% and 99%, respectively, level of confidence. Similar can be said about

the rule in Case 2 for p, = ... = ,k. Finally, the following can be shown.

Theorem 5. Under the loss function l, the decision rule of Case 1 is extended Bayes

rule.

Proof: This can be shown under Case 2 with pi = 0, i = 1,..., k, by letting Y tend to

infinity. The Bayes posterior risk of the Bayes rule at X = _, in view of (18), is

(19) cE{e[k]IX =4 - max ,{cy(-y + 1)-'xi - [2"ypi/7r(- + 1)]"'I.

On the other hand, the posterior risk of the rule of Case 1 is, under Case 2,

(20) cE{[k]IX = }- max {c7(-y + 1)-lxi-(2pi/ir)'/2 }

+ E{IO0 - X 8IlX = a) - (2p./rr)'/2

where s = s(x) is that index at which the maximum occurs. The difference of the maxima in
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(19) and (20) is bounded by the maximum of the values (2pi/7r) /2 -(2ypi/7r(7+ 1))1/2, i =

1,...,k, which does not depend on x, and which tends to zero as y tends to infinity.

Furthermore, the last difference in (20) is bounded by

k
(21) E [E j - xj =:1 - (2pj/?r)'/ 2 ].

j=1

Finally, from the fact that for every j = 1,... ,

(22) E1I% - xjllX = x}

= [3"pj/(-y + 1)]I/ 2 E(IN + [Y(3' + 1)pj]-1/2Xjl),

where N , N(0, 1) is an auxiliary random variable, and the fact that marginally, [(y +

1)pj]-1/2X, ,, N(O, 1),j = 1,. . . , k, it is seen that the integral of (21) with respect to the

marginal density of (X 1,.. ., Xk) tends to zero as -f tends to infinity. To summarize, it has

been shown that the integral of the difference of (20) and (19) with respect to the marginal

density of (X 1,... , Xk) tends to zero as -y tends to infinity.

To justify the relevance of this result, it remains to be shown that the limit of the

Bayes risks is finite. The posterior risk of the Bayes rule can be written in the form

(23) c[E{E[khX = Z} - "y(-Y + 1)-X[k]]

+ min {c-y(y + 1)-i(X[k] - xi) + [2-ypi/7r(-y + 1)]1/2}.

It is now easy to see that the following provides an upper bound to (23),

(24) cE m {ax [p/( + 1)]1/2Ni})

+ [2y/ir(-y + 1)11/2 m
I17 .
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where N 1 ,..., Nk is a sample from N(O, 1). This bound does not depend on x, and it tends

to a finite limit as y tends to infinity. Therefore, the proof of the theorem is completed.

To conclude this section, let us consider how Bayes rules d* = (s*, f.) look like under

loss function £2. As mentioned already before, the analysis is more complicated than

under £1. The risk function of a decision rule d = (s, f,) at parameter point _ is given by

the following counterpart to (17).

(25) R(_,d) = cEe([O[k] - 0()2)

+Ee_([98(x) -

Under the normal prior considered before, the posterior risk at X = x for any decision

d = (s, f) with f*(x) = (qixi +piyi)/(qi +pi), i =1,..., k, which is the estimate employed

by the Bayes rule, turns out to be the following for selection s(_) = i E {1,..., k}.

(26) cE{[O[k] - 0]2IX = Z} + qip
qi + pi '

which has to be minimized by s*(_) for i = 1,..., k. What makes this task difficult is

the fact that for any i, the conditional distribution of (0(k], 0i) at X = x does not allow

for simpler representations of the conditional expectation in (26), which in most situations

has to be evaluated on a computer.

At the end, let us see how much can be said about the Bayes rule under the three

cases considered previously.

Case 1: Noninformative prior; or q"* , 1,..., k. In this case, f,(_) = zi -

1,..., k, and s*(_) minimizes

1/2 r 1/2 m

(27) cE([ max {Xj -Xi +p Nj -Pi N,}]2) + P,,

18



where N,..., Nk is a random sample from N(O, 1).

Case 2: Prior variances proportional to sample variances; i.e. qi = -Pii = 1,..., k. In

this case, as before under £1, we have e!(x) = (yxi + pi)/(-y + 1),i = 1,...,k, but s*(.)

minimizes now (26) with qipi/(q + pi) = "ypi/(y + 1),i = k.

Case 3: Prior is decreasing in transposition (DT); i.e. qi-1 + p7' = r 1 , i = 1,...,k, for

some r > 0. This case is covered by Corollary 2, and thus the Bayes rule is the same as

that one in Case 3 under C.
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